Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (2024)

Determining R and S Configurations of Newman Projections

How do you determineR andS configurations on Newman projections?

The key is to be able to quickly convert Newman projections into line diagrams, and then use the familiar CIP rules to determine R/S on the line diagrams.

So how do you convert Newman projections to line diagrams? That’s what we’re going to cover in this article.

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (1)

Table of Contents

  1. Determining (R) and (S) On Newman Projections: A Good Thing To Know For A Stereochemistry Exam
  2. Most People Are Actually OK At Visualizing Familiar Things In 3-D. The Problem For Beginners In Organic Chemistry Is That Molecules Are Not Familiar
  3. Cats Are Familiar. So Let’s Draw The “Newman Projection” Of A Cat
  4. The Newman Projection: Eclipsed and Staggered Conformations
  5. Eclipsed And Staggered Conformations Are Interconverted By Rotation Of 60° Along The Central C-C Bond
  6. How To Convert A Newman Projection To A Line Diagram
  7. A Cheat Sheet For Going From A Newman To A Line Diagram: There Are Only 4 Templates To Consider
  8. Determining R and S Configuration On Newman Projections: Example #1
  9. Determining R and S Configuration On Newman Projections: Example #2
  10. Determining R and S On A Newman With An Eclipsed Conformation: Example #3.
  11. Conclusion: Determining R and S Configurations In Newman Projections
  12. Notes

1. Determining (R) and (S) On Newman Projections

In two recent posts we discussed how to use the Cahn-Ingold-Prelog (CIP) rules to assign (R/S) to configurations of chiral carbons in a variety of situations, both simple and more complex.

So far, all the questions have asked you to assign (R/S) on molecules drawn as bond-line diagrams, such as the molecule shown bottom left.

This is fine.But every once in awhile – like on an exam, for instance, hint hint – you might find yourself thrown for a loop. For example, how do you determine R/S when the molecule is drawn as a Newman? (bottom right)

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (2)

The trick is toconvert the Newman projection to the bond-line diagram and then assign R/S.

This post explains how to do that.

This post was co-authored with Matt Pierce ofOrganic Chemistry Solutions. Ask Matt about scheduling an online tutoring sessionhere.

2. Most People Are Actually Pretty Good At Visualizing Familiar Things In 3-D. The Problem For People Starting Organic Chemistry Is That Molecules Are Not Familiar

One common thing I hear from students about why organic chemistryishard is that they say they have “a hard time visualizing things in 3D”.

I actually don’t think this is true.

I think most people are fine visualizing things in 3D.

The problem is that visualizing molecules isunfamiliar.

Given this hypothesis, let’s take something that is familiar and do some visualization exercises.

Here’s a picture of a hungry Jerusalem street cat.

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (3)

Could you visualize what it would look like from the side?

Almost certainly, because you are very familiar with how cats look from most angles.

If you had to make a drawing (stick figures are fine) it would probablylook something like this:

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (4)

Note we took some liberties. The legs facing us are drawn as wedges and the ones pointing away are dashes.

[Here, I drew the two wedges on the “inside” relative to the dashes, but drawing them on the outside (or even alternating) is OK, since it amounts to the same thing]

3. The “Newman Projection” Of A Cat

Now let’s do the same kind of exercise, but in reverse.

Let’s take thatthe stick figure we just drew and try to picture what it would look like from the front (i.e. look from the left) and from the back (look from the right).

For reasons that will soon become apparent, we’ll add a bit of detail: let’s give the catsomecolored “socks” (orange and blue).

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (5)

[You might ask: what’s that weird looking symbol? It’s the Side-Eye of the Illuminanti, the symbol of the underground secret society of chemists that rules the worldjust a symbol that says,“imagine looking at this thing from this direction”]

Because you likely have avery good 3-D mental model of a cat, you shouldn’t have found exercise this too hard.

Hopefully you gotsomething like this, below.For simplicity, I omitted drawing in the eyes [2 in the front view, 1 in the back view (heh)]

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (6)

The circle represents the cat’s body, since the front and back hips block each other.

Maybe you noticed this helpful correspondence:

  • When we looked at the cat from theleft (i.e. front view)the groups on wedges (orange) ended up on therightside.
  • When we looked at the cat from theright(i.e. back view) the groups onwedges(orange) ended up on theleft side

4. The Newman Projection: Eclipsed and Staggered Conformations

Of course thishas all just been a roundabout way of reviewing theNewman projection, as well as an exercise in trying tohelp you realize that you are better at visualizing molecules in 3-D than you previously may have thought.

It helps that cats map on to molecules pretty well!

Recall that Newman projections are a convenient way of showing conformations in molecules. For example, the cat we just drew was in the “eclipsed” conformation, where the head and tail both line up with each other like the hour and minute hands on a clock striking midnight. The front and back legs line up as well.

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (7)

The other significant conformation of note is the “staggered” conformation, where the front three groups are offset by 60 degrees with respect to the back three groups.

[Despite several attempts, I was unable to obtain a good photo of a Jerusalem street cat in a staggered conformation. They really don’t like being twisted. So we’ll have to work with models.]

5. Eclipsed And Staggered Conformations Are Interconverted By Rotation Of 60° Along The Central C-C Bond

In the example below, we’ll rotate the back carbon 60 degrees clockwise (CW) with respect to the front carbon, along the central carbon-carbon bond. After this is done, note how the green hydrogens have moved from 12:00 to 2:00, 4:00 to 6:00, and 8:00 to 10:00 respectively.

When we look at this “staggered” molecule from the side, we obtain a bond-line diagram where the bonds in the plane of the page have a zig-zag configuration (bottom right).

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (8)

If we look at this “staggered” bond-line diagram from the left, we obtain the “staggered” Newman, drawn top right.

6. How To Convert A Newman Projection To A Line Diagram

So how do we convert a Newman diagram to a bond-line diagram? This section will walk through all the steps.

The first thing to recognize is that in bond-line diagrams there are only 4 possible patterns that the bonds in the plane of the page will follow.

There are two possible “zig-zag” shapes, corresponding to the “staggered” conformation, and there are also two possible “C-shapes” corresponding to the “eclipsed” conformation. [Note that line diagrams are often tilted 30° from these directions, but for simplicity we’re going to keep the central C-C bond strictly horizontal].

Ifwe look from the left on each of those 4 line diagram patterns, we can see that each one generates a differentNewman projection pattern.

There are 4 Newman projection patterns:

  • front down/back up,
  • front up/back down,
  • front up/back up,
  • and front down/back down.

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (9)

Now that we’ve seen how the patterns work in the forward direction, let’s now apply these patterns in thereverse direction.

7. A Cheat Sheet For Going From A Newman To A Line Diagram: There Are Only 4 Templates To Consider

Using these templates, we can take any Newman projection and work backwards to get the corresponding bond-line template, and then draw in the dashes and wedges.

Here are the 4 Newman projection patterns, converted into line diagrams. (On the right, you’ll see what it looks like when tilted 30°). Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (10)

One important thing to note. As we saw with the cat, when we look from the left side of the molecule:

  • all groups on the right (R) become wedges, and
  • all groups on the left (L) become dashes

If you follow through with the pattern of looking at the molecule from the left perspective, then all you need to remember is to draw the wedges on the right side of the Newman diagram.

8. Determining R and S Configuration On Newman Projections: Example #1

Let’s apply this to a few specific examples.

First, let’s assign R/S to a Newman drawn in a staggered conformation with a single stereocenter.

This one is drawn as (front up, back down) so we will use Template #2 from above.

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (11)

In this example we drew the (front up, back down) staggered template, and then filled in the bonds. Note that the groups on the right of the Newman (Br and CH3) became attached to wedges in the line diagram.

You should obtain (R) as the configuration.

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (12)Click to Flip

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (13)

9. Determining R and S Configuration On Newman Projections: Example #2

Next, let’s go back and do our original example (2-bromo-3,4-dimethyl pentane).

It is also drawn in the staggered conformation (front down, back up). So here we will useTemplate #1.

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (14)

Using the same method, you should obtain (R) for the stereocenter containing Br and (S) for the stereocenter on carbon #3. For details on how this was done,

To see the full details hover here or click on this link.

10. Determining R and S On A Newman With An Eclipsed Conformation: Example #3.

What if the molecule is in an eclipsed conformation? Try this one.

This follows the (front down, back down) pattern, so follow Template #4

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (15)

You should obtain (3R, 4R). To see details of how it was done, hover here or click on this link.

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (16)Click to Flip

Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (17)

11. Conclusion: Determining R and S Configurations In Newman Projections

If you can visualize what a cat would look like from the front and from the side, then you should be able to convert a Newman projection to a line diagram. This is the first step in determining R/S on a Newman projection.

Knowing that there are only a few templates makes it easier.

Once you do it enough times, you won’t even need the templates, and you might find that it’s easier tojust do it in your head.

Comments or questions? Please ask!

In the next post, we’lllook at the Fischer projection.

Thanks again to Matt for helping with this post.Hire Matt as your tutor!

Notes

Related Articles

  • How To Determine R and S Configurations On A Fischer Projection
  • Enantiomers vs Diastereomers vs The Same? Two Methods For Solving Problems
  • Newman Projection of Butane (and Gauche Conformation)
  • Conformational Isomers of Propane
  • Staggered vs Eclipsed Conformations of Ethane
  • Stereochemistry Practice Problems and Quizzes (MOC Membership)
  • How To Draw A Bond Rotation
Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams) (2024)
Top Articles
Latest Posts
Article information

Author: Barbera Armstrong

Last Updated:

Views: 6136

Rating: 4.9 / 5 (79 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Barbera Armstrong

Birthday: 1992-09-12

Address: Suite 993 99852 Daugherty Causeway, Ritchiehaven, VT 49630

Phone: +5026838435397

Job: National Engineer

Hobby: Listening to music, Board games, Photography, Ice skating, LARPing, Kite flying, Rugby

Introduction: My name is Barbera Armstrong, I am a lovely, delightful, cooperative, funny, enchanting, vivacious, tender person who loves writing and wants to share my knowledge and understanding with you.